Design and deploy Internet of Things ecosystems with advanced sensor networks, cloud integration, real-time data analytics, and industrial automation protocols.
🚁
Drone Programming
Advanced autonomous flight systems, computer vision navigation, swarm intelligence, mission planning, and professional drone development with ROS integration.
🥧
Raspberry Pi Engineering
Professional embedded systems development, Linux kernel programming, hardware interfacing, distributed computing, and industrial IoT applications.
🧠
AI & Machine Learning
Deep learning frameworks, neural network architectures, computer vision, natural language processing, and production-ready AI system deployment.
×
🌐 Advanced IoT Systems Laboratory
Industrial IoT Network Architecture
Smart City IoT Network
// Advanced IoT System with MQTT and Cloud Integrationimport paho.mqtt.client as mqtt
import json
from azure.iot.device import IoTHubDeviceClient
classIndustrialIoTSystem:
def__init__(self, connection_string):
self.client = IoTHubDeviceClient.create_from_connection_string(connection_string)
self.mqtt_client = mqtt.Client()
self.sensor_data = {}
defsetup_sensor_network(self):
# Configure distributed sensor array
sensors = [
{'id': 'temp_01', 'type': 'temperature', 'location': 'factory_floor'},
{'id': 'humid_01', 'type': 'humidity', 'location': 'warehouse'},
{'id': 'pressure_01', 'type': 'pressure', 'location': 'pipeline'}
]
return sensors
async defreal_time_analytics(self, data_stream):
# Advanced data processing and anomaly detectionfor data_point in data_stream:
processed_data = self.apply_machine_learning(data_point)
if self.detect_anomaly(processed_data):
await self.trigger_alert(processed_data)
await self.send_to_cloud(processed_data)
[IoT SYSTEM] Industrial IoT Platform v3.2 initialized
[NETWORK] MQTT broker connected - 127 devices online
[CLOUD] Azure IoT Hub connection established
[ANALYTICS] Real-time data processing active
[SECURITY] End-to-end encryption enabled